Math 10A with Professor Stankova
Quiz 3; Wednesday, 9/13/2017
Section \#106; Time: 10 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. True FALSE Let the domain of $f(x)$ be $[-1,3]$. Then the domain of $f(2 x+3)$ is

$$
[2(-1)+3,2(3)+3]=[1,9] .
$$

2. True FALSE It is possible for a function to be differentiable but not continuous.

Show your work and justify your answers.
3. (10 points) Let $f(x)=x^{3} \exp \left(-1 / x^{2}\right)$ and $g(x)=f^{-1}(x)$ be the inverse of f.
(a) (1 point) What is the domain of f ?

Solution: The only restriction is that $x \neq 0$ so $D=\mathbb{R} \backslash\{0\}$.
(b) (1 point) Find $\lim _{x \rightarrow 0} f(x)$.

Solution: Letting $x \rightarrow 0$, we have that $\frac{-1}{x^{2}} \rightarrow-\infty$ and $e^{-\infty}=0$. So "plugging in 0 " gives $\lim _{x \rightarrow 0} x^{3} \exp \left(-1 / x^{2}\right)=0 \cdot 0=0$.
(c) (5 points) Find $f^{\prime}(x)$.

Solution: First using the product rule then chain rule, we have that

$$
\frac{d}{d x}\left(x^{3} e^{-1 / x^{2}}\right)=3 x^{2} e^{-1 / x^{2}}+x^{3} e^{-1 / x^{2}} \cdot \frac{2}{x^{3}}=e^{-1 / x^{2}}\left(3 x^{2}+2\right) .
$$

(d) (3 points) Given that $f(1)=1 / e$, find $g^{\prime}(1 / e)$.

Solution: Since $f(1)=1 / e$, we know that $g(1 / e)=1$. Then using the formula that $g^{\prime}(x)=\frac{1}{f^{\prime}(g(x))}$, we have that

$$
g^{\prime}(1 / e)=\frac{1}{f^{\prime}(g(1 / e))}=\frac{1}{f^{\prime}(1)}=\frac{1}{(1 / e)(5)}=\frac{e}{5}
$$

